The correct option is C x=−1 is a point of maxima
f′(x)=(x−3)4(x+1)3(9x−7)
and f′′(x)=8(x−3)3(x+1)2(9x2+14x+1)
f′′(x)=24(x−3)2(x+1)(21x3−49x2+7x+13)
fiv(x)=24(x−3)(3x−1)(21x3−49x2+7x+13)+168(x+3)2(x+1)(9x2−14x+13)
fv(x)=48(3x−5)(21x3−49x2+7x+13)+336(x−3)2(x+1)(9x−7)
f′(3)=f′(−1)=f′(7/9)=0
At x=−1, fv(x)<0 so x=−1 is a point of maxima
At x=3, f′′(x)=f′′′(x)=fiv(x)=0 but fv(x)≠0
So f has neither maximum nor minimum at x=3.
At x=7/9, f′′(x)>0 and therefore is a point of minima.
Ans: C