wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=sin1(2x+24x2+8x+13), find the value of d(tanf(x))d(tan1x), when x=12

Open in App
Solution

Let, f(x)=sin1(2x+24x2+8x+13)
=tan1(2x+2(4x2+8x+13)(2x+3)2)
=tan1(2x+23)
d(tanf(x))d(tan1x)=d(2x+23)d(tan1x)
=2311+x2.
Now, d(tanf(x))d(tan1x) at x=12 =2311+12=2323=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon