Let f(x)=sin−1(2x+2√4x2+8x+13), find the value of d(tanf(x))d(tan−1x), when x=1√2
Open in App
Solution
Let, f(x)=sin−1(2x+2√4x2+8x+13) =tan−1(2x+2√(4x2+8x+13)−(2x+3)2) =tan−1(2x+23) ∴d(tanf(x))d(tan−1x)=d(2x+23)d(tan−1x) =2311+x2. Now, d(tanf(x))d(tan−1x) at x=1√2=2311+12=2323=1.