(i) Using the algebraic operations on functions
Given: f(x)=√x and g(x)=x, defined in the domain R+∪{0}.
(f+g)(x)=√x+x
(∵(f+g)(x)=f(x)+g(x))
Hence, (f+g)(x)=√x+x
(ii) Using the algebraic operations on functions
Given: f(x)=√x and g(x)=x, defined in the domain R+∪{0}.
(f−g)(x)=√x−x
(∵(f−g)(x)=f(x)−g(x))
Hence, (f−g)(x)=√x−x
(iii) Using the algebraic operations on functions
Given: f(x)=√x and g(x)=x, defined in the domain R+∪{0}.
(fg)(x)=x√x=x32
(∵(fg)(x)=f(x).g(x))
Hence, (fg)(x)=x32
(iv) Using the algebraic operations on functions
Given: f(x)=√x and g(x)=x, defined in the domain R+∪{0}.
(fg)(x)=√xx=x−12
(∵(fg)(x)=f(x)g(x).g(x)≠0)
Hence, (fg)(x)=1√x,x≠0