The correct option is D all of these
f(x)=x2+xg′(1)+g′′(2)
g(x)=x2+xf′(2)+f′′(3)
Differentiating both the equations, we get
f′(x)=2x+g′(1) and g′(x)=2x+f′(2)..............(1)
Putting x=1 in eqn (1), we get
f′(1)=2+g′(1) and g′(1)=2+f′(2)
Then, f′(1)=4+f′(2)
Putting x=2 in eqn (1), we get
f′(2)=4+g′(1) and g′(2)=4+f′(2)
g′(2)=4+4+g′(1)
Then, g′(2)=8+g′(1)
Differentiate eqn (1) w.r.t.x, we get,
f′′(x)=2 and g′′(x)=2 for all x
f′′(3)=2 and g′′(2)=2
g′′(2)+f′′(3)=2+2=4