The correct option is D xsinx−12sin2x<(π−1)2
Let, f(x)=xsinx−12sin2x
⇒f′(x)=xcosx+sinx−sinx⋅cosx
=sinx(1−cosx)+xcosx
For x∈(0,π2), sinx>0, 1−cosx>0, cosx>0
⇒f′(x)>0 ∀x∈(0,π2)
⇒f(x) is strictly increasing in (0,π2)
The range of f(x) is ⎛⎝limx→0+f(x), limx→π2−f(x)⎞⎠=(0,π−12)
⇒0<xsinx−12sin2x<π−12