Let f(x+y)=f(x)f(y) and f(x)=1+(sin2x)g(x) where g(x) is continuous, then f′(x) equals
f′(x)=limh→0f(x+h)−f(x)h
=limh→0f(x)(f(h)−1)h
=limh→0f(x)2(sin2h(g(h)))2h
=2f(x)g(0)