Let g(x) = 1 + x - [x] and f(x)=ā§āØā©ā1,x<00,x=01,x>0, then for all x, f(g(x)) is equal to
Here g(x) = 1 + n - n = 1, x=n∈Z
1+n+k−n=1+k(where n∈Z,0<K<1)
Now f(g(x))=⎧⎨⎩−1,g(x)<00,g(x)=01,g(x)>0
Clearly, g(x)>0 for all x. So, f(g(x)) = 1 for all x.