Let g(x)=x∫0f(t)dt, where f is such that 12≤f(t)≤1 for t∈[0,1] and 0≤f(t)≤12 for t∈[1,2]. Then, g(2) satisfies the inequality
Given, g(x)=x∫0f(t)dt
⇒g(2)=2∫0f(t)dt⇒g(2)=1∫0f(t)dt+2∫1f(t)dt
Now,
12≤f(t)≤1 for t∈[0,1]
⇒12≤1∫0f(t)dt≤1⋯(1)
Also,
0≤f(t)≤12 for t∈[1,2]
⇒0≤2∫1f(t)dt≤12⋯(2)
Using equations (1) and (2), we get
12≤1∫0f(t)dt+2∫1f(t)dt≤32⇒12≤g(2)≤32∴12≤g(2)<2