The correct option is D g(2n)=0,n∈N
Given:
f(x+4)=f(x+6)⋯(i)f(−x)=−f(x)⋯(ii)
∴f(x) is an odd function with period 2.
g(x)=x∫0f(t)dt
Putting t=−z⇒dt=−dz
⇒g(x)=−−x∫0f(−z)dz⇒g(−x)=−x∫0f(−z)dz⇒g(−x)=x∫0f(z)dz=x∫0f(t)dt(∵f(−x)=−f(x))∴g(x)=g(−x)
Thus g(x) is an even function.
Also,
g(x+2)=x+2∫0f(t)dt⇒g(x+2)=2∫0f(t)dt+2+x∫2f(t)dt⇒g(x+2)=g(2)+g(x)⋯(iii)(∵f(x) has period 2)
Now,
g(2)=2∫0f(t)dt⇒g(2)=1∫0f(t)dt+2∫1f(t)dt
Replacing t with t+2 in second integral, we get
⇒g(2)=1∫0f(t)dt+0∫−1f(t+2)dt⇒g(2)=1∫0f(t)dt+0∫−1f(t)dt⇒g(2)=1∫−1f(t)dt=0
As f(t) is odd function.
⇒g(2)=0
From equation (iii), we get
g(x+2)=g(x)
Therefore, g(x) is even function with period 2.
and g(2n)=2n∫0f(t)dt=n⋅g(2)
[∵f(x) has period 2]
Hence, g(2n)=n⋅0=0