The correct option is C (−√23,0)∪(√23,∞)
f" (x) > 0
⇒ f' is increasing function
To find : where g is necessary Increasing function.
g is increasing ⇒g′>0
⇒14f′(2x2−1)(4x)+12f′(1−x2)(−2x)>0⇒x{f′(2x2−1)−f′(1−x2)}>0
Case1: x>0→(1)f′(2x2−1)>f′(1−x2)
⇒2x2−1>1−x2⇒x∈(−∞,√23)∪(√23,∞)→(2)
(1)∩ (2)⇒x∈√23,∞....(3)
Case II: x<0→(3)f′(2x2−1)<f′(1−x2)
⇒2x2−1<1−x2⇒x∈(−√23,√23)→(4)
(3)∩(4)⇒∈(−√23,0)→(6)∴ g is inc in x∈(5)∪(6)⇒x ∈(−√23,0)∪(√23,∞)