The correct option is D aϵϕ
h(x)=f(x)−a(f(x))2+a(f(x))3
h′(x)=f′(x)[3a(f(x))2−2a(f(x))+1]
Now h′(x) >0 if f′(x) > 0 and 3a(f(x))2−2af(x)+1 > 0
⇒3a >0, Δ < 0⇒4a2−12a < 0
a > 0 aϵ(0,3)
h′(x) > 0 if f′(x) < 0 and 3a(f(x))2−2af(x)+1 < 0
⇒3a < 0 and Δ < 0
⇒a < 0 and aϵ(0,3).
No value of a