wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let (1+x2)2.(1+x)n=n+4K=0aK.xK. If a1,a2 and a3 are in A.P, find n.

Open in App
Solution

(1+2x2+x4)(1+nC1x+nC2x2+nC3x3+...)=(a0+a1x+a2x2+a3x3+...)(1+nC1x+(2+nC2)x2+(nC3+2nC1)x3+...)=(a0+a1x+a2x2+a3x3+...)
Hence,
a1=nC1,a2=2+nC2,a3=nC3+2nC1
Given, a1,a2,a3 are in AP, implies 2a2=a1+a3
Putting values of a1,a2,a3 we get
2(2+nC2)=nC1+nC3+2nC14+2nC2=3nC1+nC3nC3+3nC12nC24=0n(n1)(n2)6+3n2n(n1)24=0n39n2+26n24=0n34n25n2+20n+6n24=0n2(n4)5n(n4)+6(n4)=0(n4)(n25n+6)=0(n4)(n23n2n+6)=0(n4)(n3)(n2)=0n=4,3,2
n can not be 2 as nC3 wil not be valid,
Hence, n=4,3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon