Let minimum value of f(x)=2tan2x+8cot2x,x∈(0,π2) be m. If number of integral values of N for which m+0.2≤log32N≤m+0.8 is (λ⋅241+μ), where λ and μ are co-prime numbers, then the value of (λ+μ) is
Now, m+0.2≤log32N≤m+0.8 ⇒8.2≤log32N≤8.8 ⇒(32)8.2≤N≤(32)8.8 ⇒241≤N≤244 ∴ Number of integral values of N is, 244−241+1 =241(8−1)+1=7⋅241+1 ⇒7⋅241+1≡λ⋅241+μ ∴λ+μ=7+1=8