Let P(A)=P(B), prove that A=B
Let P(A)=P(B),Then,
A⊆A⇒AϵP(A)⇒AϵP(B)[∵P(A)=P(B)]⇒A⊆B …(i)
Again, B⊆B⇒BϵP(B)⇒BϵP(A)[∵P(B)=P(A)]⇒B⊆A(B) …(ii)
Hence, A=B