For S1=0,dydx=3x2−6x−8
For S2=0,dydx=6x+7
Solving S1=0 and S2=0 we get x=−1,−1,8
at x=−1,m1=m2=1
⇒S1=0,S2=0 touch each other
Equation of common normal at P,
y−0=−1(x+1) ⇒x+y+1=0
At x=8,m1=136,m2=55⇒S1=0,S2=0 intersect each other
Equation of common tangent at P,
y−0=1(x+1)
⇒y=x+1