Let p(x)=a2+bx,q(x)=lx2+mx+n. If p(1)−q(1)=0,p(2)−q(2)=1 and p(3)−q(3)=4, then p(4)−q(4) equals
Let, h(x)=p(x)−q(x)
⇒h(x)=a2+bx−lx2−mx−n
⇒h(x)=Ax2+Bx+C
Here, A=−l,B=(b−m),C=(a2−n)
So we will solve for A, B , C thus reducing the number of variables.
The first equation says h(1)=p(1)−q(1)=0
⇒A+B+C=0 .......(i)
The second relation is h(2)=p(2)−q(2)=1
⇒4A+2B+C=1 ........(ii)
The third relation give in the problem is h(3)=p(3)−q(3)=4
⇒9A+3B+C=4 ........(iii)
Solving (ii), we get
4A+2B+C=3A+B+(A+B+C)=3A+B=1 ........(iv) .....[From(i),(ii)]
Solving (iii), we get
9A+3B+C=3(3A+B)+C=3(1)+C=3+C=4 .....[From(iii),(iv)]
⇒C=1
Substituting the value of C in (i), we get
A+B=−1
We also have, from (iv), the relation, 3A+B=1
Subtracting the two, we get
(A+B)−(3A+B)=−2A=−1−1=−2
⇒A=1
Substituting the value of a in (iv), we get
3A+B=3(1)+B=B+3=1
⇒B=−2
Thus, h(x)=p(x)−q(x)=x2−2x+1=(x−1)2
⇒p(4)−q(4)=h(4)=(4−1)2=9
p(4)−q(4)=9