The correct option is
C ϕ (an empty set)
We have to check the differentiability of
f(x) at
x=0 and
π
- At x=0
RHL=limh→0f(x+h)−f(x)h
=limh→0f(h)−f(0)h=|h−π|(eh−1)sinh−0h=limh→0π(eh−1)sinhh
∵f(0)=0
=limh→0π×0×sinhh=0×1=0
∵limh→0sinhh=1
For Left-hand limit at x=0
LHL=limh→0f(x)−f(x−h)−h=limh→0f(0)−f(−h)−h
=limh→00−(|−h−π|(eh−1)sin|−h|)−h)=limh→0π(eh−1)sinhh
=limh→0π×0×sinhh=0×1=0
LHL=RHL⟹f(x) is differentiable at x=0
2. At x=π
=limh→0f(π+h)−f(π)h=|π+h−π|(eπ+h−1)sin(π+h)−0h=limh→0h(eπ−1)sin(π+h)h
∵f(π)=0
=limh→0h×(eπ−1)×sinπh=0×1=0
For Left-hand limit at x=π
LHL=limh→0f(x)−f(x−h)−h=limh→0f(π)−f(π−h)−h
=limh→00−(|π−h−π|(eπ−h−1)sin|π−h|)−h)=limh→0h(eπ−1)sin(π+h)h
=limh→0h×(eπ−1)×sinπh=0
LHL=RHL⟹f(x) is differentiable at x=π
Set S is an empty set.