The correct option is C 9(Sn−Sn−1)=n(10n−1)
Given Sn=1+22+333+...+999...9(9times)for(1≤n≤9)
For n=9,
Sn=1+22+333+...+888...8(8times)+999...9(9times)
Therefore, Sn−1=1+22+333+...+888...8(8times)
Consider, (Sn−Sn−1)=(1+22+333+...+888...8(8times)+999...9(9times))−(1+22+333+...+888...8(8times))
⇒(Sn−Sn−1)=999...9
⇒(Sn−Sn−1)=9(111...1)
⇒(Sn−Sn−1)=9(108+107+106+...+100)
⇒(Sn−Sn−1)=9(10n−1)9
⇒9(Sn−Sn−1)=9(10n−1)
⇒9(Sn−Sn−1)=n(10n−1)....(sincen=9)
Similarly, for n=8,
Sn=1+22+333+...+888...8(8times)
⇒Sn=1+22+333+...+777...7(7times)+888...8(8times)
Therefore, Sn−1=1+22+333+...+777...7(7times)
Consider, (Sn−Sn−1)=(1+22+333+...+777...7(7times)+888...8(8times))−(1+22+333+...+777...7(7times))
⇒(Sn−Sn−1)=888...8
⇒(Sn−Sn−1)=8(111...1)
⇒(Sn−Sn−1)=8(107+106+105+...+100)
⇒(Sn−Sn−1)=8(10n−1)9
⇒9(Sn−Sn−1)=8(10n−1)
⇒9(Sn−Sn−1)=n(10n−1)....(sincen=8)
In general, 9(Sn−Sn−1)=n(10n−1)
Thus, 9(Sn−Sn−1)=n(10n−1), for(2≤n≤9).