Let Sn denote the sum of first n terms of an A.P. If S2n=3Sn, then S3n:Sn is equal to
6
As, Sn2n=3Sn
⇒2n2[2a+(2n−1)d]
=3n2[2a+(n−1)d]
⇒2[2a+(2n−1)d]=3[2a+(n−1)d]
⇒4a+2(2n−1)d=6a+3(n−1)d
⇒4a+4nd−2d=6a+3nd−3d
⇒6a−4a+3nd−3d−4nd+2d=0
⇒2a−nd−d=0
⇒2a−(n+1)d=0
⇒2a+(n+1)d……(i)
Now,
S3nSn=3n2[2a+(3n−1)d]n2[(2a+9n−1)d]
=3[(n+1)d+(3n−1)d][(n+1)d+(n−1)d] [using (i)]
=3[nd+d+3nd−d][2d+d+nd−d]
=3[4nd][2nd]
=3×2=6
Hence, the correct alternative is option (b).