The correct option is B 1332
Sn=4n∑k=1(−1)k(k+1)2k2
Sn=1222+32+42−52−62+........−(4n−3)2−(4n−2)2+(4n−1)2+(4n)2
Sn=(32−12)+(42−22)+(72−52)+(82−62)+(112−92)+(122−102)+......+(4n−1)2−(4n−3)2+(4n)2−(4n−2)2
Sn=2(1+3)+2(4+2)+2(7+5)+2(8+6)+......+2(4n−1+4n−3)+2(4n+4n−2)
Sn=2[1+2+3+.....+4n]=2⋅4n(4n+1)2
From A, 4n(4n+1)=1056
4n2+n=264
4n2+n–264=0
n=8
From B, 4n(4n+1)=1088 (Not possible)
From C, 4n(4n+1)=1120 (Not possible)
From D, 4n(4n+1)=1332
n=9