The correct option is A f(2n)−16f(n) for all nϵN
Given f(n)=∑nr=1r4=14+24+34+..........(n−1)4+n4
Now ∑nr=1(2r−1)4=14+34+54+......+(2n−1)4=14+24+34+..........(n−1)4+n4+(n+1)4+......+(2n)4−[24+44+64+........+(2n−2)4+(2n)4]
Here we can see that the first 2n terms are just f(2n)
and if we take 24 common from the second n-terms of the expression then it reduces to
f(2n)−24[14+24+34+.........+n4]=f(2n)−16f(n)