Let the sequence a1,a2,a3.....an form an A.P. Then
a21−a22+a23−a24+.....+a22n−1−a22n is equal to
n2n−1[a21−a22n]
Suppose d is the common difference of the given A.P.
d=a2−a1=a3−a2=a4−a3s=a21−a22+a23−a24+.......a22n−1.......a22n=(a1−a2)(a1+a2)(a3−a4)(a3+a4)+........(a2n−1−a2n)(a2n−1−a2n)=−d(a1+a2+a3+......+a2n−1+a2n)=−d.2n2(a1+a2+..........+a2n−1+a2n)=−d.2n2(a1+a2n)=−nd(a1+a2n)Also a2n=a1+(2n−1)d⇒d=a2n−a12n−1S=n2n−1(a1−a2n)(a1+a2n)=n2n−1(a21−a22n)