Let Sn=(12+1)!+(22+1)2!+(32+1)3!+...+(n2+1)n!
∴nth term Tn=(n2+1)n!
= {(n+1)(n+2)−3(n+1)+2}n!
Tn=(n+2)!−3(n+1)!+2n!
Putting n=1,2,3,4,...,n
Then,
T1=3!−3 .2!+2 .1!
T2=4!−3 .3!+2 .2!
T3=5!−3 .4!+2 .3!
T4=6!−3 .5!+2 .4!
........................
........................
Tn−1=(n+1)!−3 n!+2(n−1)!
Tn=(n+2)!−3 (n+1)!+2(n)!
∴Sn=T1+T2+T3+...+Tn
=(n+2)!−2(n+1)!(the rest cancels out)
=(n+2)(n+1)!−2(n+1)!
=(n+1)!(n+2−2)
=n(n+1)!
∴k=1
k+4=5