The correct option is
A b) 4u + v = 0
Let =∫10(x+1)x2+1dx
Let x=tanθ ⇒ dx=sec2θ dθ
u=∫π/40ln(1+tanθ)sec2θsec2θ dθ
=∫π/40ln(1+tanθ)dθ
=∫π/40ln(1+tan(π4))dθ
=∫π/40ln(1+1−tanθ1+tanθ)dθ
=∫π/40ln(21+tanθ)dθ
=∫π/40ln2dθ−=∫π/40ln(1+tantheta)dθ
⇒ 2u=π4ln2
⇒ u=π8ln2
Again
v=∫π/20ln(sin2x)dx
=∫π/20(2sinxcosx)dx
=π2ln2+∫π/20lnsinxdx+∫π/20lncosxdx
Let I=∫π/20lnsinx dx
I=∫π/20log(2sinπ2cosπ2)dx
=π2log2+∫π/20lnsinx2dx+∫π/20logcosx2dx
=π2log2+I1+I2
Put x2=t ⇒ dx=2dt
I=π2log2+2∫π/40lnsint dt+2∫π/40lncost dt
Now put t=π2−t in ∫π/40lncost dt,
we get ∫π/40lncost dt=∫π/2π/4lnsint dt
∴ I=ln2+2∫π/40lnsint dt+2∫π/2π/4lnsint dt
=π2ln2+2∫π/20lnsint dt
⇒ −I=π2ln2 ⇒I=−π2ln2
v=π2ln2−π2ln2−π2ln2
v=−π2ln2
∴ u=π8ln2,v=−π2ln2
∴ 4u+v=0