Let →a=a1^i+α2^j+a3^k, →b=b1^i+b2^j+b3^k and →c=c1 ^i+c2 ^j+c3 ^k be three non-zero vectors such that →c is a unit vector perpendicular to both the vectors →a and →b. If the angle between →a and →b is π6,
then ∣∣
∣∣a1a2a3b1b2b3c1c2c3∣∣
∣∣2 is equal to
14(a21+a22+a23)(b21+b22+b23)
Since, (→a×→b)=|→a||→b| sinπ6.^n(→a×→b).→c=12|→a||→b|.^n.→c[→a →b →c]=12|→a||→b|.cos 0∘
∵^n is perpendicular to both →a,→b and →c is also a unit vector perpendicular to both →a and →b.
∴∣∣
∣∣a1a2a3b1b2b3c1c2c3∣∣
∣∣2=[→a →b →c]2=14.|→a|2|→b|2=14(a21+a22+a23)(b21+b22+b23)