Given equation.
x3−x−1=0
If x1,x2,x3 are roots then
x1+x2+x3=−constanttermcoefficientofx3=1
x1+x2+x3=−coefficientofx2coefficientofx3=0
x1x2+x2x3+x3x1=coefficientofxcoefficientofx3=−1
divide last equation by x1,x2,x3
1x1+1x2+1x3=−1
Expand the given equation
x1(x2−x3)2+x2(x3−x1)2+x3(x2−x1)2=x12x2+x12x3+x22x1+x22x3+x32x1+x32x2−6x1x2x3
x1x2x3(x1x3+x1x2+x2x3+x2x1+x3x2+x3x1−6)
=1(x1(1x2+1x3)+x2(1x3+1x1)+x3(1x2+1x1−6)
=x1(−1−1x1)+x2(−1−xx2)+x3(−1−−1x3)−6
=−(x1+x2+x3)−1−1−1−6=0−3−9
∴ absolute value |−9|=9