For obeservation \(x_1,x_2,x_3,x_4,x_5\)
Given mean: \(m=\dfrac{x_1,x_2,x_3,x_4,x_5}{5}\)
\(\Rightarrow~m=\dfrac{\sum x_i^2}{5}\)
Given standard deviation
\(s=\sqrt{\dfrac{\sum x_i^2}{5}-\left ( \dfrac{\sum x_i}{5} \right )^2}...(i)\)
For observations \(kx_1,kx_2,kx_3,kx_4,kx_5\)
Standard deviation
\(\sigma=\sqrt{\dfrac{\sum(kx_i)^2}{5}-\left (\dfrac{\sum kx_i}{5} \right )^2}\)
\(\sigma=\sqrt{\dfrac{k^2\sum x_i^2}{5}-\left (\dfrac{k\sum x_i}{5} \right )^2}\)
\(\sigma=k\sqrt{\dfrac{\sum x_i^2}{5}-\left ( \dfrac{\sum x_i}{5} \right )^2}\)
\(\sigma=ks\) [From equation (i)]
Hence, the correct option is (š¶).