Let x1,x2,.....xn be values taken by a variable X and y1,y2,.....yn be the values taken by a variables Y such that yi=axi+b,i=1,2,.....,n. Then.
Var(Y)=a2Var(X)
Var(X)=∑ni−1(xi−¯¯¯¯X)2n where mean (¯¯¯¯¯X)=∑ni−1xin
Var (Y) =∑ni=1(yi−¯¯¯¯Y)2n and ¯¯¯¯Y=∑ni−1yin
We have,
yi=axi+b
¯¯¯¯Y=∑ni−1yin
=∑ni−1axi+bn=a∑ni−1xin+nbn=a¯¯¯¯¯X+b
Var (Y) = ∑i−1n(yi−¯¯¯¯Y)2n
=∑ni−1{axi+b−(a¯¯¯¯X+b)}2n
=∑ni−1(axi−a¯¯¯¯X)2n
=a2∑ni−1(xi−¯¯¯¯X)2n
=a2Var(X)