The correct option is
A 12.25Given:- (x+10)50+(x−10)50=a0+a1x+a2x2+...........+a50x50
To find:- a2a0=coefficient of x2Coefficient of x0
As we know that, the general term in an expansion (a+b)n is given as,
Tr+1=nCr(a)n−r(b)r
Now,
General term of (x+10)50-
Here,
a=x,b=10
Tr+1=50Cr(x)50−r(10)r
For coefficient of x2-
50−r=2⇒r=48
T48+1=50C48(x)50−48(10)48
T49=50C48(10)48x2
For coeficient of x0-
50−r=0⇒r=50
T50+1=50C50(x)50−50(10)50
T51=50C50(10)50x0
Now,
General term of (x+(−10))50-
Here,
a=x,b=−10
Tr+1=50Cr(x)50−r(−10)r
For coeficient of x2-
50−r=2⇒r=48
T48+1=50C48(x)50−48(−10)48
T49=50C48(10)48x2
For coeficient of x0-
50−r=0⇒r=50
T50+1=50C50(x)50−50(−10)50
T51=50C50(10)50x0
Now from the given expansion,
a2=50C48(10)48+50C48(10)48=50C48((10)48+(10)48)
a0=50C50(10)50+50C50(10)50=50C50((10)50+(10)50)
Now,
a2a0=50C48((10)48+(10)48)50C50((10)50+(10)50)
As we know that,
nCr=n!r!(n−r)!
Therefore,
a2a0=50×492×(10481050)
⇒a2a0=494=12.25