The correct option is C circles neither touch nor intersect each other.
Let S1:x2+y2−2x−6y+9=0
Centre C1≡(1,3)
and radius r1=√(−1)2+(−3)3−9=1
S2:x2+y2+6x−2y+1=0
Centre C2≡(−3,1)
and radius r2=√32+(−1)2−1=3
Now, C1C2=√(1+3)2+(3−1)2=√16+4
⇒C1C2=√20=2√5
and r1+r2=1+3=4
Since C1C2>r1+r2,
hence circles neither touch nor intersect each other.