Let x=tanA,y=tanB,z=tanC and x+y+z−xyz=0, then A+B+C=
Given x=tanA,y=tanB,z=tanC
and x+y+z−xyz=0
∴tan(A+B+C)=tanA+tanB+tanC−tanAtanBtanC1−(tanAtanB+tanBtanC+tanCtanA)
tan(A+B+C)=x+y+z−xyz1−(xy+yz+xz)=0
⟹tan(A+B+C)=0
⟹(A+B+C)=tan−1(0)=nπ
⟹A+B+C=nπ