Let z1=10+6i and z2=4+6i. If z is a complex number such that the argument of (z−z1)/(z−z2) is π/4, then prove that |z−7−9i|=3√2.
Open in App
Solution
π4=argz−z1z−z2=arg(x+iy−10−6ix+iy−4−6i) π4=argz−z1z−z2=arg(z−z1)−arg(z−z2) or π/4=θ1−θ2 or tan−11=tan−1y1x1−tan−1y2x2 or tan−11=tan−1y−6x−10−tan−1y−6x−4 or tan−11=tan−1(y−6)[1x−10−1x−4]1+(y−6)2(x−10)(x−4) ∴1=6(y−6)x2−14x+40+y2−12y+36 or x2−14x+y2−18y+112=0 or (x−7)2−49+(y−9)2−81+112=0 ∴(x−7)2+(y−9)2=18 ....(1) ∴|z−7−9i|=|(x−7)+i(y−9)| =[(x−7)2+(y−9)2]1/2=√(18)=3√2 by (1)