The correct option is C p2=3q
Since p,q∈R,
∴z1,z2 are in conjugate pairs.
Let z1=α+iβ and z2=α−iβ
z1+z2=2α=−p
z1z2=α2+β2=q
Solving the two equations, we get
z1≡A(−p2,√4q−p24)
z2≡B(−p2,−√4q−p24)
O≡(0,0)
z1, z2 and origin form an equilateral triangle.
So, OA=AB
⇒p24+4q−p24=(√4q−p24+√4q−p24)2
⇒q=4q−p2
⇒p2=3q