wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let z=1i32, i=1. Then the value of 21+(z+1z)3+(z2+1z2)3+(z3+1z3)3++(z21+1z21)3 is

Open in App
Solution

z=13i2
z=[1+3i2]=ω

21+(z+1z)3+(z2+1z2)3+(z3+1z3)3++(z21+1z21)3
=21+(ω1ω)3+((ω)2+(1ω)2)3+((ω)3+(1ω3)3)3++((ω)21+1(ω)21)3
=21(ω+ω2)3+(ω+ω2)3+(11)3+(ω+ω2)3(ω+ω2)3+(1+1)3++(ωω2)3+(ω2+ω)3+(ω3ω3)3
=21+(118)+(1+1+8)+(118)+(1+1+8)+(118)+(1+1+8)+(118)
=218=13

flag
Suggest Corrections
thumbs-up
108
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
(a+b)(a-b) Expansion and Visualisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon