The correct option is
D (a21+b21+c21)(a22+b22+c22)Given a1,b1,c1 and a2,b2,c2 are d.r.s of two lines
Vector equation of lines with a1,b1,c1 as d.r.s is
a1^i+b1^j+c1^k
Vector equation of line with a2,b2,c2 as d.r.s is
a2^i+b2^j+c2^k
Let θ be the angle between two lines
Formula: Dot product A⋅B=|A||B|cosθ
Cross product: |A×B|=|A||B|sinθ
Dot product of two lines
a1a2+b1b2+c1c2=(√a12+b12+c12)(√a22+b22+c22)cosθ
Squaring on both sides
(a1a2+b1b2+c1c2)2=(a12+b12+c12)(a22+b22+c22)cos2θcos2θ=(a1a2+b1b2+c1c2)2(a12+b12+c12)(a22+b22+c22)...(1)
Cross Product
A×B=∣∣
∣
∣∣^i^j^ka1b1c1a2b2c2∣∣
∣
∣∣A×B=^i(b1c2−b2c1)+^j(c1a2−c2a1)+^k(a1b2−a2b1)|A×B|=√(b1c2−b2c1)2+(c1a2−c2a1)2+(a1b2−a2b1)2|A×B|=√∑(b1c2−b2c1)2
By cross product formula,
√∑(b1c2−b2c1)2=(√a12+b12+c12)(√a22+b22+c22)sinθ
Squaring on both sides,
∑(b1c2−b2c1)2=(a12+b12+c12)(a22+b22+c22)sin2θsin2θ=∑(b1c2−b2c1)2(a12+b12+c12)(a22+b22+c22)....(2)
We know that
sin2θ+cos2θ=1....(3)
Adding (1),(2)
(a1a2+b1b2+c1c2)2(a12+b12+c12)(a22+b22+c22)+∑(b1c2−b2c1)2(a12+b12+c12)(a22+b22+c22)=sin2θ+cos2θ
From (3),
(a1a2+b1b2+c1c2)2+∑(b1c2−b2c1)2=(a12+b12+c12)(a22+b22+c22)