wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


lf A=Z1+Z2+Z3, B=Z1+Z2ω+Z3ω2,C=Z1+Z2ω2+Z3ω then Z1,Z2,Z3 in terms of A, B, C are

A
Z1=A+B+C3, Z2=A+Bω2+Cω3,
Z3=A+Bω+Cω23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Z1=A+B+Cω23,Z2=A+Bω+Cω23,
Z3=A+Bω2+Cω3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Z1=Aω+B+Cω23, Z2=A+B+C3,
Z3=Aω2+Bω+Cω3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Z1=A+Bω+Cω23,Z2=Aω2+Bω+C3,
Z3=Aω2+Bω2+Cω3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A Z1=A+B+C3, Z2=A+Bω2+Cω3,
Z3=A+Bω+Cω23
A=Z1+Z2+Z3
B=Z1+Z2ω+Z3ω2
C=Z1+Z2ω2+Z3ω
Clearly, A+B+C=3Z1+Z2(1+ω+ω2)+Z3(1+ω+ω2)
Z1=A+B+C3(1+ω+ω2=0)
Now,
Bω=Z1ω+Z2ω2+Z3ω3=Z1ω+Z2ω2+Z3
Cω2=Z1ω2+Z2ω4+Z3ω3=Z1ω2+Z2ω+Z3
So,A+Bω+Cω2=Z1(1+ω+ω2)+Z2(1+ω+ω2)+3Z3
Z3=A+Bω+Cω23
Similarly,
Bω2=Z1ω2+Z2ω3+Z3ω4=Z1ω2+Z2+Z3ω
Cω=Z1ω+Z2ω3+Z3ω2=Z1ω+Z2+Z3ω2
So, A+Bω2+Cω=Z1(1+ω+ω2)+3Z2+Z3(1+ω+ω2)
Z2=A+Bω2+Cω3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon