The correct option is A Z1=A+B+C3, Z2=A+Bω2+Cω3,
Z3=A+Bω+Cω23
A=Z1+Z2+Z3
B=Z1+Z2ω+Z3ω2
C=Z1+Z2ω2+Z3ω
Clearly, A+B+C=3Z1+Z2(1+ω+ω2)+Z3(1+ω+ω2)
⇒Z1=A+B+C3∵(1+ω+ω2=0)
Now,
Bω=Z1ω+Z2ω2+Z3ω3=Z1ω+Z2ω2+Z3
Cω2=Z1ω2+Z2ω4+Z3ω3=Z1ω2+Z2ω+Z3
So,A+Bω+Cω2=Z1(1+ω+ω2)+Z2(1+ω+ω2)+3Z3
⇒Z3=A+Bω+Cω23
Similarly,
Bω2=Z1ω2+Z2ω3+Z3ω4=Z1ω2+Z2+Z3ω
Cω=Z1ω+Z2ω3+Z3ω2=Z1ω+Z2+Z3ω2
So, A+Bω2+Cω=Z1(1+ω+ω2)+3Z2+Z3(1+ω+ω2)
⇒Z2=A+Bω2+Cω3