The correct option is B 2sec2x(b2−a2)
Given, ∫f(x)sinxcosxdx=12(b2−a2)log(f(x))+c,
Differentiating both sides w.r.t. x,
f(x)sinxcosx=12(b2−a2)f′(x)f(x)
=2(b2−a2)sinxcosx=f′(x)f(x)2
Integrating both sides w.r.t x, we get
⇒(b2−a2)∫sin2xdx=∫f′(x)f(x)2dx
Substitute, f(x)=t⇒f′(x)dx=dt
⇒(b2−a2)−cos2x2=∫t−2dt
⇒(b2−a2)−cos2x2=t−1−1
⇒(b2−a2)cos2x2=1f(x)
⇒f(x)=2(b2−a2)sec2x