lf f(x)=p(x)q(x) where p(x)=√cosx, q(x)=log(1−x1+x) then ∫baf(x)dx equals where a=−1/2b=1/2
f(x)=p(x)q(x)
p(x)=√cosx, q(x)=log(1−x1+x)
I=∫1/2−1/2√cosxlog(1−x1+x)dx
I=∫1/2−1/2√cos(−x)log(1+x1−x)dx
I=−∫1/2−1/2−√cosxlog(1−x1+x)dx
⇒I=−∫1/2−1/2√cosxlog(1−x1+x)dx
2I=0
I=0