The correct option is A 23log2
Let
x=w where w is the cube root of unity.
Hence we know that 1+w+w2=0 and w3=1.
And w3n+k=w3n.wk=wk where both n,kϵR.
Therefore
log(1−w+w2)=a1w+a2w2+a3+a4w+a5w2+a6...
Let x=w2
log(1−w2+w)=a1w2+a2w+a3+a4w2+a5w+a6...
Let x=1, we get
log(1)=a1+a2+a3+a4...
Adding i ii and iii, we get
log(1−w2+w)+log(1−w+w2)+log(1)=a1(1+w+w2)+a2(1+w+w2)+3a3+a4(1+w+w2)...
log(1−w2+w)+log(1−w+w2)+log(1)=3[a3+a6+a9.....]
log((1+w)−w2)+log((1+w2)−w)+0=3[a3+a6+a9.....]
log(−w2−w2)+log(−w−w)=3[a3+a6+a9.....]
log(−2w2)+log(−2w)=3[a3+a6+a9.....]
log(−2w2×(−2w))=3[a3+a6+a9.....]
log(4w3)=3[a3+a6+a9.....]
log(4)=3[a3+a6+a9.....]
2log(2)3=[a3+a6+a9.....]