limx→ 0(ax−bxx)=
We have, limx→ 0(ax−bxx)
At x=0 the value of the given expression takes 00 form
Making the given expression of standard limits
by adding and subtracting 1
limx→ 0ax−bx+1−1x
=limx→ 0(ax−1)−(bx−1)x
=limx→ 0(ax−1)x−limx→ 0bx−1x
we know,
=limx→ 0ax−1x=logea
So,=logea−logeb
=loge(ab)
Answer option B is correct