Let f(x)=(1−x2)1log(1−x)
For f(x) to be defined, x∈(−∞,1)−{0}
So, limx→1(1−x2)1log(1−x)=limx→1−(1−x2)1log(1−x)
=elimx→1−log(1−x2)log(1−x)
=elimx→1−(−2x1−x2)(−11−x) (Using L- Hospital rule)
=elimx→1−2x1+x
=e
Alternate Solution:
limx→1(1−x2)1log(1−x)=limx→1(1−x)log(1−x)e⋅(1+x)1log(1−x)=e⋅20=e [∵ylogyx=x]