The correct option is C 2
limx→∞[x√x2+4−√x4+16]
Rationalising the terms inside the bracket
=limx→∞[x√x2+4−√x4+16×x√x2+4+√x4+16x√x2+4+√x4+16]
=limx→∞[x2(x2+4)−(x4+16)x√x2+4+√x4+16]
=limx→∞⎡⎢
⎢
⎢
⎢⎣4x2−16x2√1+4x2+x2√1+16x4⎤⎥
⎥
⎥
⎥⎦
=limx→∞⎡⎢
⎢
⎢
⎢⎣4−16x2√1+4x2+√1+16x4⎤⎥
⎥
⎥
⎥⎦
=41+1
=2