The correct option is B 2
limx→0x+2sinx√x2+2sinx+1−√sin2x−x+1=limx→0(x+2sinx)(√x2+2sinx+1+√sin2x−x+1)x2+2sinx+1−sin2x+x−1=limx→0(x+2sinx)x2+2sinx−sin2x+x×2
As it is 00 form
Therefore, on applying L'Hospitals' Rule
limx→02(1+2cosx)2x+2cosx−2sinxcosx+1=2