We have,
limx→01−cos3xxsinxcotx
=limx→01−cos3xxsinxcosxsinx
=limx→01−cos3xxcosx(00form)
Onapplyingl ′ Hospitalrule
=limx→00−3cos2x(−sinx)xddx(cosx)+cosxdxdx
=limx→03cos2xsinxx(−sinx)+cosx
Taking limitandweget,
=3sin0cos200(−sin0)+cos0
=01
=0
Hence, this is the answer.