Evaluate limx→07xcosx−3sinx4x+tanx
Given limx→07xcosx−3sinx4x+tanx
Dividing numerator and denominator by 'x' we get,
=limx→07cosx−3sinxx4+tanxx
=limx→07cosx−limx→03sinxxlimx→04+limx→0tanxx
[Since, limx→0f(x)+g(x)h(x)=limx→0f(x)+limx→0g(x)limx→0h(x)]
=7×limx→0cosx−3limx→0sinxx4+limx→0tanxx
Applying the formula of limx→0sinxx=1 and limx→0tanxx=1
=7(1)−3(1)4+(1)
=7−34+1
=45