limx→0cos ax−cos bxcos cx−1
limx→0cos ax−cos bxcos cx−1
=limx→0−2sin(ax+bx2)sin(ax−bx2)−2sin2cx2 (1−cos 2θ=2sin2θ)
=limx→0(a+b2)x×sin(a+b2)x(a+b2)x×(a−b2)x×sin(a−b2)x(a−b2)xc2x24×sin2cx2c2x24
=(a+b)(a−b)c2×limx→0sin(a+b2)x(a+b2)x×limx→0sin(a−b2)x(a−b2)x(limx→0sincx2cx2)2
=a2−b2c2×1×11 [∵limθ→0sinθθ=1]
=a2−b2c2