Evaluate limx→0log(a+x)−log(a−x)x
limx→0log(a+x)−log(a−x)x
=limx→0log(a+xa−x)x [Since, loga−logb=log(ab)]
=limx→0log[(a−x)+2xa−x]x [Adding and subtracting x in the numerator of log function ]
=limx→0log(1+2xa−x)x
Multiplying 2(a−x)2(a−x) in the denominator of above expression, we get
=limx→0log(1+2xa−x)x×[2(a−x)2(a−x)]
=limx→0log(1+2xa−x)2xa−x ×limx→02a−x
[Since, limx→af(x)×g(x)=limx→af(x)×limx→ag(x)]
Applying the formula of limt→0log(1+t)t=1
Where t=2xa−x
Thus, above expression can be written as =1×2a−0
=2a
Therefore, the value of given expression is =2a