limx→0√1+3x−√1−3xx
Rationalising the numerator
=limx→0(√1+3x−√1−3x)x×(√1+3x+√1−3x)(√1+3x+√1−3x)
=limx→0(1+3x)−(1−3x)(√1+3x+√1−3x)
=limx→06x(√1+3x+√1−3x)x(00)
=limx→06(√1+3x+√1−3x)
=6√1+√1
=62=3
Evaluate limx→0(√1+3x−√1−3x)x