limx→11−1xsin π(x−1)
limx→11−1xsin π(x−1)=limx−1→0(x−1)x×sin π(x−1)
As x→1, then x−1→0, let x−1=y⇒y→0
limy→0y(y+1)sin(πy)
=limy→0y(y+1)(sinπy)=limy→0(y+1)sinπyy=1(limy→0(y+1))×(limy→0sinπyy×π)×π
=1(1)(1×π) [∵limθ→0sin θθ=1]
=1π
limx→11−x2sinπx
limx→11−x−131−x−23