limx→1(1x2+x−2−xx3−1)
limx→1(1x2+2x−x−2−xx3−13)
=limx→1(1x(x+2)−(x+2)−x(x−1)(x2+x+1))
=limx→1(1(x+2)(x−1)=x(x−1)(x2+x+1))
=limx→11(x−1)(1x+2−xx2+x+1)
=limx→11(x−1)(x2+x+1−x(x+2)(x+2)(x2+x+1))
=limx→11(x−1)(x2+x+1−x(x+2)(x+2)(x2+x+1))
=limx→11(x−1)(x2+x+1−x2−2x(x+2)(x2+x+1))
=limx→11(x−1)(−x+1(x−1)(x+2)(x2+x+1))(00form)
=limx→1−1(x+2)(x2+x+1)
=−1(1+2)(1+1+1)
=19